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Light-matter interfaces are a cornerstone  
of quantum optics

Quantum non-linear optics
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Photons in free space do not interact with each other:  
good candidates to transmit information

However: we need light-matter interfaces for 
processing that information

Bulk materials are weakly non linear
However atoms are ultimate non-linear element

Metrology, sensing, imaging

Exotic many body physics for photons and atoms

Quantum information science

…



In free-space, atom-photon coupling is weak

Probability of interaction
~λ2/A <<1 due to diffraction limit



How to increase atom-photon interaction?

Option 2: use a cavity or other nanophotonic structures
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Option 1: use multiple atoms (ensemble)

Option 3: combine both and take advantage of 
interactions between atoms



Disordered atomic ensembles are a very 
common light-matter interface

Solano et al. , Nat. Commun. 8, 1857(2017)Guerin et al., Phys. Rev. Lett. 116, 083601 (2016)



In cavity QED, figure of merit is C=g2/κΓ’
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Conventional ways of enhancing  
atom-light interactions
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In waveguide QED, that is D=Γ1D/Γ’
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In cavity QED, figure of merit is C=g2/κΓ’ C=Ng2/κΓ’

In waveguide QED, that is D=Γ1D/Γ’

Conventional ways of enhancing  
atom-light interactions



Nanophotonic structures add versatility, 
allowing to go beyond cavity QED

cQED: infinite interaction range between atoms inside cavity 

wQED: tunable interaction range, character of interaction is  
position dependent… dispersion engineering!

pumping rate from jF ¼ 2,mF ¼ −2〉 to F = 1
(Fig. 3D). The numerically simulated cavity mode
is a standing wave (with a period given by the
PWC lattice constant, a ∼ 290 nm), modulated
over several micrometers by a Gaussian-like en-
velope with two lobes. Both features are visible
in the data. Because of the tight transverse con-
finement of the optical field provided by the
waveguide, the standing wave is expected to have
only 50% contrast: There are no real intensity
nodes. The observed contrast is less than than this,

so as shown in Fig. 3D, the simulation is con-
volved with a Gaussian with a root-mean-square
(RMS) width of dxrms = 95 nm. This blurring
arises from drift in the tweezer alignment over the
course of the measurement (32 hours), jitter in
the galvanometer mirror (50 nm RMS), and mo-
tion of the atom in the trap. The RMS zero-point
atomic motion is 15 to 20 nm, and the thermal
motion could be somewhat larger because of
heating from technical effects during the exper-
imental sequence. Viewed as a noninvasive probe

of the cavity intensity distribution, this technique
has a spatial resolution of 2 dxRMS = 190(30) nm,
following the Sparrow resolution criterion.

Next, we quantified the atom-cavity coupling
strength by measuring the reduction of the cav-
ity transmission induced by a single atom. Given
the cooperativity h ≡ (2g)2 / (kG)—where k and
G are the full linewidths of the cavity and the
atomic excited 5P3/2 state, respectively—the trans-
mission in the presence of an (unsaturated) res-
onant atom is given by T = (1 + h)−2 (5). To

Fig. 3. Coupling a single atom to a photonic
crystal cavity. (A) An SEM image of a typical PWC
attached to a tapered optical fiber. The fiber serves as
both a mechanical support and an optical interface to
the cavity. (B) Reflection spectrum of the PWC reso-
nance near 780 nm, measured through the optical
fiber. The line is a fit to a Lorentzian plus a back-
ground of Fabry Perot modes of the waveguide, yield-
ing Q = 460(40) and l0 = 779.5(1) (full spectrum is
available in fig. S2). (C) Simulation of the PWC reso-
nance at 779.5 nm, overlaid with a cross section of
the structure. The simulated mode volume is V =
0.89 l3. (D) Measurement of the intensity distribu-
tion of the cavity using a trapped atom. Error bars
reflect 1 SD in the fitted pumping rates. The red line
shows a model based on simulations of the cavity
mode. The systematic disagreement on the left side
of the waveguide may be due to interference with
background light from the fiber that is not coupled
into the waveguide. (Inset) In a set of points acquired
in a continuous 8-hour window so as to minimize
alignment drift, the standing wave structure of the
cavity mode is visible.
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Fig. 4. Change in cavity transmission from a single
atom. The transmission of a weak probe beam tuned to
the F = 2 → F = 3 transition is measured versus detuning
from the atomic resonance ∆a = wl − wa, with (wl,wa) =
(laser, zero-field atomic transition) frequency. The cavity
resonance remains fixed at wa + 0.3 k. Error bars reflect
1 SD in the fitted transmission reduction. The line is a fit
to a numerical model described in the text, yielding 2g =
2p × 600(80) MHz. (Inset) Transmission versus time for
continuous wave probe pulse at ∆a = 27 MHz. The cavity
transmission is initially suppressed; after ~1 ms, the atom
is heated by the probe laser and lost from the trap,
restoring transmission. Error bars show shot noise in the
number of detected photons; the data are averaged over
∼2500 runs with single atoms. The shaded area represents
the absence of 60 photons (per atom) from the transmitted
field.
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Fabry-Perot 
Kimble (2008)

dielectric cavity 
Lukin (2014)

superconducting cavity 
Wallraff (2004)

SC waveguide, Painter (2019)

nanofiber 
Laurat (2015)

NV in diamond waveguide, Lukin (2016)

photonic crystal, Kimble (2016)



Recent development:  
ordered atomic arrays with optical tweezers

Endres et al., Science 354, 1024 (2016)

Barredo (2017)

1D

2D 3D

In these systems, interference in photon emission leads to correlation: 
atom arrays can behave as “quantum nanostructures”

Barredo et al., Science 354, 1021 (2016) Barredo et al.,  
Nature 561, 79 (2018)



Other possibility: quantum gas microscopes

Mazurenko et al., Nature 545, 462 (2017)

Bakr et al., Science 329, 547 (2010)

Greif et al., Science 351, 953 (2016) 



Atom arrays as light-matter interfaces

d=λ1D/4
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Exponential improvement in photon retrieval fidelity 
when coupled to 1D waveguides

Many-body physics: emergence of fermionization in the 
dark states.

AAG et al., PRX 7, 031024 (2017)

Shahmoon et al., PRL 118, 113601 (2016)
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Perczel et al., PRL 119, 023603 (2017)

Bettles et al., PRL 116, 103602 (2016)



Similar physics (universality) for SC qubits  
and solid-state emitters

Sipahigil et al., Science 354, 847 (2016)

Si-vacancies in diamond

Also in quantum dots, molecules…

Mirhosseini et al., Nature 569, 692 (2019)

Transmon qubits 
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Endres et al., Science 354, 1024 (2016)

Barredo (2017)

1D

2D 3D

In these systems, interference in photon emission leads to correlation: 
atom arrays can behave as “quantum nanostructures”

Barredo et al., Science 354, 1021 (2016) Barredo et al.,  
Nature 561, 79 (2018)

Ordered atomic arrays with optical tweezers: 
perfect playground for correlated dissipation



Atom arrays as light-matter interfaces
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Early treatment of collective effects: Dicke model

Small volume approximation: 
•  atoms interact with either 

one field mode (cavity)  
• atoms are in same spatial 

location

Question:  
what is the physics of subradiant states in ordered atomic arrays?



d>>λ0d<λ0
Γ0

Γ0

Interference leads to correlated decay

For 2 atoms, we have two atomic modes: 
• One that decays faster than Γ0: superradiant (constructive interference) 
• One that decays slower than Γ0: subradiant (destructive interference)

Photon emission is a wave phenomenon

What happens for large atom number?



Conventional paradigm:  
Maxwell-Bloch equations for disordered ensembles

Quantum optics 101 has a problem

continuous atomic 
polarization density

Γ’

preferred  
optical mode E(z,t)

Field equation (quasi-1D preferred mode):
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Atom-light interaction as a spin model

where
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Starting from full atom-field Hamiltonian, we integrate out the 
field and find that the atoms density matrix follows

coherent evolution
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Atom-light interaction as a spin model

Insight 1: light-matter interaction recast into a dissipative, driven, long-
range spin interaction (non-unitary dynamics)

Insight 2: describes field properties even when we have integrated out the 
field in the first place

Equivalently:
+quantum jumps



Collective modes of a 1D atomic chain in  
free space (single excitation manifold)

with

For many atoms, in the single excitation manifold, the Hamiltonian can 
 be written as a NxN matrix, in the basis where only 1 atom is excited: 

0

ω0=k0c

|egg...gi, |geg...gi, ..., |gg...gei

Eigenvalues inform about:
• Frequency shift from bare atomic resonance ω0 
• Enhanced/inhibited decay rate with respect to single atom Γ0



30 atoms 30 eigenstates
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Spatial profile of most subradiant atomic mode

| i =
X

j

cj�
j
eg|gi⌦N

50 atoms

Intensity profile generated by most subradiant eigenstate
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c j

Atom position zj/d

wave function coefficientsSpatial profile of most 
subradiant eigenstate

dipole phases anti-align

For a finite chain, radiative losses occur only at the edges



Atoms guide light perfectly  
(if the chain is infinite)

kz
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d<λ0/2

π/d-π/d 0-k0=-ω0/c k0=ω0/c

Longitudinal wave-vector kz

ω0ω0

Frequency

In an infinite chain, the 
eigenstates are Bloch 
modes
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Since:

the atomic guided mode  
is evanescent along 
perpendicular direction
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k2z + k2? =
!2
0

c2

Since:

the atomic guided mode  
is evanescent along 
perpendicular direction

kz
d<λ0/2

- π/d-π/d 0-k0=-ω0/c k0=ω0/c

Longitudinal wave-vector kz

Γ0

Linewidth (decay rate)

Γ0

Atoms guide light perfectly  
(if the chain is infinite)



Emergent power law behavior in the 
decay rates and lifetimes
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Universality: 1/N3 scaling seems to be universal for 1D arrays

- similar scaling found in generic open quantum systems with  
   boundary dissipation, Znidaric (2015)
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Depends on array dimensionality and topology

Universality: 1/N3 scaling seems to be universal for 1D arrays

- similar scaling found in generic open quantum systems with  
   boundary dissipation, Znidaric (2015)



Guiding light in an atomic waveguide: reflection

d=0.1 λ0, ρ=0.5 d (preliminary)

time



d=0.1 λ0, ρ=0.5 d (preliminary)

Guiding light in an atomic waveguide: flipped atom

time



What does that imply for light-matter interactions? Can we 
use subradiance to our advantage?

The problem of subradiant modes is that 
they are hard to excite

Yes, if we find a way to access the subradiant manifold



-

The problem of subradiant modes is that 
they are hard to excite
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-

The presence of a fiber allows to excite 
selectively radiant modes

The presence of a fiber allows to excite selectively radiant modes: 
• superradiant to fiber 
• subradiant to free-space

π/d-π/d 0 k1D-k1D -k0=-ω0/c k0=ω0/c

Longitudinal wave-vector kz

ω0ω0

Frequency



infidelity ~ 1/D, with optical depth D=NΓ1D/Γ’

Application: a quantum memory for light



Quantum memories require three level atoms: 
photon storage
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Quantum memories require three level atoms: 
photon retrieval
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Atoms now interact both through free space  
and through the fiber

Coupling through  
guided modes:

decay into 
guided mode

guided mode 
wave vector

Γ1D



Coupling through  
non-guided modes:

non- guided Green’s 
function (calculated 
exactly)

Atoms now interact both through free space  
and through the fiber



Correlated dissipation improves the fidelity of 
photon retrieval exponentially, well beyond 
previously known bounds
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including dissipative correlations ~ exp (-N) 
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Debate:  
is subradiance a classical or a quantum 
phenomena?



Debate:  
is subradiance a classical or a quantum 
phenomena?

My view: It is quantum for 
- more than one excitation 
- several ground states 
- maybe other situations?



Apply excitation twice:

 decays as 1/N
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Single excitation (classical, linear optics): 

| i / S†|gi⌦N =
NX

i=1

ci|eii

This is not an eigenstate! Spins are not bosons.

| i / (S†)2|gi⌦N =
NX

i,j=1

cij |eieji

|cij |

, decays as 1/N3 

Subradiance as a many-body problem: 
example of two excitations



Excitations obey effective Pauli exclusion principle in space

atom position
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|cij |
decays as 1/(N/2)3 

We write ansatz for            found by “fermionizing” single-excitation wf’s

By diagonalizing the Hamiltonian we find: | (2)i =
NX

i,j=1

cij |eieji

| (2)i

This holds whenever the number of excitations n is small (n<<N)

Subradiance as a many-body problem: 
example of two excitations



Follow up: can entanglement help guide light?

an array of classical dipoles guides light

atomic ground states can behave as defects



Previous work, not applicable to arrays

Hyperfine “à la Dicke”: small volume approximation, 
neglect of photon polarization



Hyperfine structure breaks down the toy-model 
of two-level atoms
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Atom a

Atom b(2) (1)

(1)  photon polarization is 
not uniform in space 



Hyperfine structure breaks down the toy-model 
of two-level atoms

Atom a

Atom c

Atom b

Atom a

Atom b(2) (1)

(1)  photon polarization is 
not uniform in space 

(2) if not in a stretched 
state, excited state 
decays into unoccupied 
state, not protected by 
subradiance



The many-body complexity of the  
hyperfine problem (even for single excitation)

Multilevel atoms2-level atoms

unique ground state

|gi⌦N

degenerate ground state

N=4:



States of a 1D chain along z can be classified 
according to angular momentum projection Fz
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Most subradiant states are “defect states”

Defect is pushed to the edge, and does not see light intensity

Similar to 2-level atom subradiant states, with decay Γ ~ 1/N3
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For low angular momentum: emergence of domain walls



However, there are also exotic,  
and very non-classical subradiant states

No analogy with the physics of 2-level atoms

In the thermodynamic limit, we have an ansatz for them, 
which works well for the finite chain. Decay ~1/N3

They are highly symmetrical and appear in the minimum angular 
momentum subspace

Dicke state with angular  
momentum projection Fz=3/2



However, there are also exotic,  
and very non-classical subradiant states

z/d

y/d

0 20 40-40 -20
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Problems:

We do not know how to access them

They appear for small distances or modified dispersion relations

Experimentalists: beware
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Nanophotonic structures add versatility, 
allowing to go beyond cavity QED

cQED: infinite interaction range between atoms inside cavity 

wQED: tunable interaction range, character of interaction is  
position dependent… dispersion engineering!

pumping rate from jF ¼ 2,mF ¼ −2〉 to F = 1
(Fig. 3D). The numerically simulated cavity mode
is a standing wave (with a period given by the
PWC lattice constant, a ∼ 290 nm), modulated
over several micrometers by a Gaussian-like en-
velope with two lobes. Both features are visible
in the data. Because of the tight transverse con-
finement of the optical field provided by the
waveguide, the standing wave is expected to have
only 50% contrast: There are no real intensity
nodes. The observed contrast is less than than this,

so as shown in Fig. 3D, the simulation is con-
volved with a Gaussian with a root-mean-square
(RMS) width of dxrms = 95 nm. This blurring
arises from drift in the tweezer alignment over the
course of the measurement (32 hours), jitter in
the galvanometer mirror (50 nm RMS), and mo-
tion of the atom in the trap. The RMS zero-point
atomic motion is 15 to 20 nm, and the thermal
motion could be somewhat larger because of
heating from technical effects during the exper-
imental sequence. Viewed as a noninvasive probe

of the cavity intensity distribution, this technique
has a spatial resolution of 2 dxRMS = 190(30) nm,
following the Sparrow resolution criterion.

Next, we quantified the atom-cavity coupling
strength by measuring the reduction of the cav-
ity transmission induced by a single atom. Given
the cooperativity h ≡ (2g)2 / (kG)—where k and
G are the full linewidths of the cavity and the
atomic excited 5P3/2 state, respectively—the trans-
mission in the presence of an (unsaturated) res-
onant atom is given by T = (1 + h)−2 (5). To

Fig. 3. Coupling a single atom to a photonic
crystal cavity. (A) An SEM image of a typical PWC
attached to a tapered optical fiber. The fiber serves as
both a mechanical support and an optical interface to
the cavity. (B) Reflection spectrum of the PWC reso-
nance near 780 nm, measured through the optical
fiber. The line is a fit to a Lorentzian plus a back-
ground of Fabry Perot modes of the waveguide, yield-
ing Q = 460(40) and l0 = 779.5(1) (full spectrum is
available in fig. S2). (C) Simulation of the PWC reso-
nance at 779.5 nm, overlaid with a cross section of
the structure. The simulated mode volume is V =
0.89 l3. (D) Measurement of the intensity distribu-
tion of the cavity using a trapped atom. Error bars
reflect 1 SD in the fitted pumping rates. The red line
shows a model based on simulations of the cavity
mode. The systematic disagreement on the left side
of the waveguide may be due to interference with
background light from the fiber that is not coupled
into the waveguide. (Inset) In a set of points acquired
in a continuous 8-hour window so as to minimize
alignment drift, the standing wave structure of the
cavity mode is visible.
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Fig. 4. Change in cavity transmission from a single
atom. The transmission of a weak probe beam tuned to
the F = 2 → F = 3 transition is measured versus detuning
from the atomic resonance ∆a = wl − wa, with (wl,wa) =
(laser, zero-field atomic transition) frequency. The cavity
resonance remains fixed at wa + 0.3 k. Error bars reflect
1 SD in the fitted transmission reduction. The line is a fit
to a numerical model described in the text, yielding 2g =
2p × 600(80) MHz. (Inset) Transmission versus time for
continuous wave probe pulse at ∆a = 27 MHz. The cavity
transmission is initially suppressed; after ~1 ms, the atom
is heated by the probe laser and lost from the trap,
restoring transmission. Error bars show shot noise in the
number of detected photons; the data are averaged over
∼2500 runs with single atoms. The shaded area represents
the absence of 60 photons (per atom) from the transmitted
field.
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Fabry-Perot 
Kimble (2008)

dielectric cavity 
Lukin (2014)

superconducting cavity 
Wallraff (2004)

SC waveguide, Painter (2019)

nanofiber 
Laurat (2015)

NV in diamond waveguide, Lukin (2016)

photonic crystal, Kimble (2016)



Figures of merit of different systems

atom+fiber
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ν

atom+PhC SC qubit+transmission line

QD+PhC
• Model connects quantitatively to experimental 1D systems

Atoms - PhC
waveguides

QD - PhC
waveguides

Atoms -
nanofibers

Γ"# Γ′⁄ ∼ 0.05 Γ"# Γ′⁄ ∼ 1 Γ"# Γ′⁄ > 10
Waveguide QED



Nanophotonics brings many opportunities

Review paper: Chang et al., RMP 90, 031002 (2018)

chiral quantum optics

optomechanical crystals

2D photonic crystals

Lodahl et al., Nature 541, 473 (2017)Safavi-Naeini et al., Nature 472, 69 (2011)

Perczel et al., arXiv:1810.12299 (2018)

Gonzalez-Tudela et al.,  
Nat. Photon. 9, 320 (2015)



Example of dispersion engineering:  
Photonic crystal waveguides

ncore

Regular fiber:  
light guided by total internal reflection

Single defect: loss by scattering into other modes

Periodic array of defects: band structure

ω=(c/n) k

ω(k)

k
π/a

bandgap

ω(k)

k



ωA in propagating region:  
infinite interaction range

ω(k)

k
π/a

ωA

ω(k)

k
π/a

ωA

ωA in bandgap: atom dressed by photonic cloud

• atom carries its own cavity around

Example of dispersion engineering:  
Photonic crystal waveguides



ωA in propagating region:  
infinite interaction range

ω(k)

k
π/a

ωA

ω(k)

k
π/a

ωA

ωA in bandgap: atom dressed by photonic cloud

• atom carries its own cavity around 
• coherent, tunable-range atom-atom interactions 

Initial work by John (1990) 
More recent: Douglas (2015), Gonzalez Tudela (2015)

Example of dispersion engineering:  
Photonic crystal waveguides



Work at Caltech: the alligator photonic 
crystal waveguide

Photonic crystal

1 cm



N~ 106 Cs atoms 
at ρ ~ 1010/cm3  

T ~ 30μK

1 mm

Feeding the atoms to the alligator

370 nm

220 nm



Fiber

APCW

Cooling tether

The alligator photonic crystal waveguide

mode-mapping 
section mechanical and 

thermal support 
tether arrays

alligator

220 nm370 nm



The graveyard

A. McClungSu Peng YuJon Hood

… and the gravediggers



The atoms are trapped above the 
alligator

Schematic of trapIncoming light

Trap intensity

~ 3 atoms trapped  
~145 nm above surface 



Schematic of trap

The atoms are trapped above the 
alligator

Incoming light

~ 3 atoms trapped  
~145 nm above surface 



Alligator dispersion relation
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How does the coupling between atom and  
light relate to measurable observables?

Input field Output field 
t0(ω)



Input field Output field 
t(ω)

Transmission spectrum gives information about atom-light interactions.

How does the coupling between atom and  
light relate to measurable observables?



Transmission spectra without atoms

Transmission without atoms
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Transmission spectra with atoms

On resonance cavity, symmetric spectrum, dissipative interaction
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Transmission spectra with atoms

Out of resonance cavity, asymmetric spectrum, coherent interaction
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Transmission spectra with atoms

Into the bandgap, asymmetric spectrum, coherent interaction

atom-probe detuning (MHz)

Normalized transmission with atomsTransmission without atoms
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We obtain the coherent and dissipative 
rates from the spectra measurements 
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Transmission coefficient

We obtain the transmission coefficient from plugging the 
solution of Heisenberg equations to the field equation

solve for σeg

low saturation 
single excitation 
manifold

transmission  
without atoms

coherent rate 
~Re G1D

dissipative rate 
~Im G1D

Input Transmission



Dispersive/coherent atom-light interactions give 
rise to a Fano-like transmission spectrum

Degree of asymmetry ~J1D/Γ1D
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The future:  
atoms as quantum photonic structures



Summary
Physics of correlated quantum dipoles with  

dissipation and long range interactions

Quantum info protocols

Quantum dielectrics

Metrology and many body physics

Correlated
dissipation

Lattice atomic clocks

Open quantum many body system

nanophotonic analogues with 
atoms

Fundamental limits and error bounds

Entanglement protocols with 
ensembles, quantum gates

Interface with nanophotonics

Experimental platforms

Multilevel atoms

Atoms, SC qubits, solid-state 
emitters 

Tweezers, quantum microscopesrole of topology and dimension 
intrinsic quantum non-linearity

, disorder

Potential for metrology

Increasing complexity

Not much is known, new playground for multidisciplinary physics

Self organization
Metrology


