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Introduction

Optical lattices, first developed together with laser cooling, are now a common and im-
portant tool for the manipulation of quantum gases, in particular in the frame of lattice
clocks or quantum simulation. They make use of the periodic dipole potentials generated
with laser sources in a standing wave configuration.
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Figure 1: Diffraction of an atomic sodium beam by a stationary standing wave. Left:
sketch of the experiment. Right: number of atoms detected as a function of position in
the far field, revealing diffraction peaks in transverse momentum at px = 0,±2~k,±4~k.
Figure from [1].

1D Depending on the laser beam configuration, we have access to various lattice geome-
tries. The simplest situation consists in two counterpropagating plane waves ±k = ±kex
with the same frequency ω = ck and parallel polarizations, which produce a standing wave
giving rise to a 1D periodic potential V (x) = V0 sin2(kx) = V0 [1− cos(2kx)] /2 of period
a = λ/2 where λ = 2π/k. V couples momentum states along x such that p′x = px ± 2~k.

One of first application of one-dimensional standing waves is atomic diffraction. The
phenomenon is equivalent to light diffraction on a grating.

Diffraction by a standing wave can be observed in two main opposite regimes. In
the thin grating limit, when the interaction time of the atoms with light is shorter than
the inverse of the recoil frequency ωrec = ~k2/(2M), the recoil energy Erec = ~ωrec is not
resolved by the wide Fourier width of the pulse1, and an atom can be diffracted into several
diffraction peaks, with a distribution weighted by the square of Bessel functions. The new
atom momentum differs from the incoming momentum by n2~kex in the direction x of
the standing wave, corresponding to redistribution of n photons from one laser beam to
the other. Diffraction of a sodium beam by a laser standing wave has been demonstrated
in the 80’s [1], see Fig. 1.

On the other hand, in the thick grating regime i.e. for interaction times with the light
larger than ω−1rec, the recoil energy is resolved. Diffraction can occur only for certain angles
of the incoming velocity, in order to conserve both momentum and energy: p⊥ − ~kex
is coupled to p⊥ + ~kex where p⊥ is the atomic momentum in the direction orthogonal
to the standing wave. This regime corresponds to Bragg diffraction, and is widely used
in atom interferometry for inertial sensing, as the two states |p⊥ ± ~kex〉 are coupled by
the standing wave in an isolated 2-level system, which allows controlled Rabi oscillations
between these states. A typical atom interferometer will then consist in a π/2—π—π/2
sequence using these two states. A gravimeter or a gyrometer can be realized in this way.

Beyond 1D A 3D optical lattice is obtained by superimposing at least four plane waves
in different directions. Initially, 3D optical lattices were loaded from magneto-optical traps

1The term ‘pulse’ should be replaced by ‘interaction time’ in the case of an atomic beam crossing a
time-independent standing wave. See the exercise sheet.
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(MOTs) and characterized by (i) a frequency close to resonance (a few linewidths Γ), (ii)
a low filling fraction (1 atom every 10–100 sites), and (iii) a significant photon scattering
rate. This topic was pioneered by the group of Gilbert Grynberg at ENS [2].

Optical lattices in the context of quantum gases use far off resonant detuned light in
order to suppress spontaneous emission. A 3D square lattice is obtained by superimposing
three pairs of beams in all three directions, with frequencies slightly different to avoid
interferences between pairs of beams. Playing with laser frequencies and polarizations, it
is also possible to realize a 2D triangular lattice with three plane waves at 120◦ locked in
phase, or a 2D ‘brickwall’ lattice which has the same topology than the hexagonal lattice
of graphene. Starting from a degenerate quantum gas, which density is much higher than
the one of a MOT, we can reach a filling of 1, 2, 3 atoms per lattice site. The seminal
experiment of Greiner et al. on the observation of the Mott transition [3] opened the way
to the development of quantum simulators [4].

In a lower density regime, strong optical lattices are used to reach a very tight confine-
ment of neutral atoms, trapped in the Lamb-Dicke regime where their zero-point motion is
smaller than the wavelength. This configuration is used in metrology for building optical
clocks, free from Doppler effect [5].

This course will give the basics of optical lattices in the far detuned regime where
spontaneous emission is very low. Useful references include

1. The 2005 review by Immanuel Bloch [6] and Markus Greiner’s PhD thesis [7]

2. Lecture notes by Fabrice Gerbier http://www.lkb.upmc.fr/boseeinsteincondensates/
wp-content/uploads/sites/10/2018/03/OL2018.pdf

3. Lectures at Collège de France by Jean Dalibard (in French) [8]

4. On dipole forces: the review paper by Grimm, Weidemüller and Ovchinnikov [9]

1 Band structure in a periodic potential

1.1 Bloch theorem

The Bloch theorem is fundamental for the study of a quantum particle in a periodic
potential. It states that the wavefunction of the particle is necessarily of the form

ψq(r) = uq(r)eiq·r

where uq is periodic over the lattice (in real space) and q belongs to the reciprocal lattice.
In the following we will prove this theorem.

1.1.1 Translation operators

Consider a potential V , periodic in a 3D space. There exist a basis of three vectors
(a1,a2,a3) such that

V (r + d) = V (r)

for any d such that

d = n1a1 + n2a2 + n3a3 with n1, n2, n3 ∈ Z.
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The ensemble of vectors like d

B = {n1a1 + n2a2 + n3a3, n1, n2, n3 ∈ Z} (1)

is called the Bravais lattice. The Hamiltonian Ĥ = p̂2/2M + V (r̂) is then invariant
through a translation of d ∈ B. As a consequence, Ĥ commutes with the three translation
operators T̂aj , j = 1, 2, 3.

T̂aj = exp

(
− iaj · p̂

~

)
such that T̂ajψ(r) = T̂ajψ(r− aj).

We note immediately that any two translation operators commute with each other, as they
are only function of p̂. As the three T̂aj also commute woth Ĥ, we can find a common
basis for all four operators.

Now we remark that
T̂−1d = T̂−d = T̂ †d

which means that the translation operators are unit operators, with eigenvalues of the
form e−iθ (of modulus unity). θ can be any real number, but of course θ and θ + 2π
describe the same eigenvalue. We will denote e−iθj a given eigenvalue of T̂aj .

1.1.2 Reciprocal lattice

We introduce the reciprocal lattice B′ generated by the three vectors (b1,b2,b3) such
that

ai · bj = 2πδij .

We now define the vector q on the reciprocal lattice as

q =
1

2π

∑
j=1,2,3

θjbj

using the phase θj of the eigenvalue of T̂aj . The scalar product of q with any vector of
the Bravais lattice reads

ai · q =
1

2π

∑
j

θjai · bj = θi.

Then ψq, eigenvector of all the T̂aj , satisfies for all j:

ψq(r− aj) = T̂ajψq(r) = e−iθjψq(r) = e−iaj ·qψq(r).

Now if we define the function uq(r) = e−ir·qψq(r), we have for all three aj :

uq(r− aj) = e−ir·qeiaj ·qψq(r− aj) = e−ir·qψq(r) = uq(r).

uq is thus periodic over the original Bravais lattice (in real space).
We have thus proven that the eigenfunctions of Ĥ are of the form

ψq(r) = uq(r)eiq·r (2)

where uq is periodic over B. q is called the quasi-momentum.

4



As the phases θj are defined modulo 2π, q is defined modulo b ∈ B′. We will consider
to simplify that ψq+b(r) = ψq(r) (no phase factor).

The ψq are called the Bloch functions. They constitute a basis of the Hilbert space:∫
ψ∗n,q(r)ψn′,q′(r)dr = δnn′δq,q′ . (3)

We introduced the band index n that we will discuss in Section 1.2 as well as a quantization
volume L3 and periodic boundary conditions for the normalization of ψn,q such that q =
2π/L

∑
i niei.

1.1.3 Symmetry of the energy spectrum

In the absence of a magnetic field, the Hamiltonian, quadratic in p, is symmetric under
the time reversing symmetry ψ → ψ∗, p→ −p, r→ r. If ψq(r) is a solution with energy
E(q), ψ∗q(r) = e−iq·ru∗q(r) is a solution with the same energy. But as u∗q(r) is a periodic
function on B, e−iq·ru∗q(r) is an eigenfunction for the quasi-momentum −q, with energy
E(−q). We conclude that the spectrum is symmetric with respect to q:

E(−q) = E(q). (4)

1.2 Energy bands

Here we will discuss the 1D case in order to simplify the notations.

V (x+ a) = V (x) ψq(x) = eiqxuq(x).

uq is periodic of period a, which means than we can write it with a Fourier sum:

uq(x) =
∑
j∈Z

αj(q)e
ij 2π

a
x.

In turn, ψq(x = writes

ψq(x) =
∑
j∈Z

αj(q)e
i(q+j 2πa )x.

ψq thus appears to be a series of plane waves with momenta ~
(
q + j 2πa

)
, j ∈ Z, or a comb

of momenta.
Injecting the Bloch theorem in the Hamiltonian, we get an Hamiltonian equation for

uq: [
p̂2

2M
+ V (x̂)

]
eiqxux(x) = En(q)eiqxuq(x)

Using
p̂
(
eiqxuq

)
= p̂

(
eiqx

)
uq + eiqxp̂uq = eiqx (~q + p̂)uq

we derive an Hamiltonian equation for uq:[
(p̂+ ~q)2

2M
+ V (x̂)

]
un,q = En(q)un,q. (5)
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For each q, there is a spectrum of eigenenergies En(q) with eigenfunctions un,q. The
corresponding eigenfunctions of the Hamiltonian Ĥ are ψn,q(x) = eiqxun,q(x) with energy
En(q). They form an orthonormal basis.

As q is defined modulo 2π/a, we restrict the description to the first Brillouin zone
(FBZ), which contains Ns = L/a discretized values of q:

First Brillouin zone: q ∈
[
−π
a
,
π

a

)
. (6)

The energy interval spanned by En(q) for q ∈ FBZ is called the nth energy band.
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Figure 2: First energy bands in the first Brillouin zone.

1.3 Energy bands for a sinusoidal potential

We consider now specifically the case

V (x) = V0 sin2(kx) =
V0
2

[1− cos(2kx)] =
V0
2
− V0

4
ei2kx − V0

4
e−i2kx (7)

corresponding to the standing wave obtained with lasers at frequency ω and wave number
k. The characteristic scales are

lattice period: a =
λ

2
=
π

k
(8)

first Brillouin zone: q ∈[−k, k) (9)

energy scale: Erec =
~2k2

2M
(10)

frequency scale: ωrec =
~k2

2M
. (11)

We will discuss the band structure in svereal limits.

1.3.1 Trivial case: V0 = 0

In the absence of external potentials, the solutions are well known and are plane waves
〈x|p〉 ∝ eipx/~. We introduce the integer j equal to the integer part of (p+~k)/(2~k), and
get

p = j2~k + ~q with j ∈ Z and q ∈ [−k, k)

such that we can write the plane wave under the Bloch form:

eipx/~ = eiqx eij2kx.

6



The energy reads

En(q) =
p2

2M
=

~2

2M
(q + j2k)2 .

In the band n, j = ±n. Ignoring wavefunction normalization, we get

n = 0 E0(q) =
~2q2

2M
=
q2

k2
Erec u0,q(x) = 1

n = 1 E1(q) =
~2

2M
(q ± 2k)2 u1,q(x) = e±2ikx

n = 2 E2(q) =
~2

2M
(q ± 4k)2 u2,q(x) = e±4ikx

The spectrum is the usual parabola folded inside the first Brillouin zone, with crossing at
the edges or in the center of the Brillouin zone.
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Figure 3: Energy bands for a vanishing potential. The parabola of free particles is folded
inside the first Brillouin zone.

1.3.2 Band structure for V0 > 0

A nonzero V0 introduces a coupling at the crossing points. The solution can be found by
numerical diagonalization in the Fourier space. We first decompose ψq on plane waves:

ψq(x) =
∑
j

αj(q)e
i(q+j 2πa )x =

∑
j

αj(q)e
i(q+j2k)x (12)

then inject this expression in the Hamiltonian equation:

En(q)ψq = Ĥψq =

[
p̂2

2M
+ V0(x̂)

]
ψq

En(q)
∑
j

αj(q)e
i(q+j2k)x =

∑
j

~2

2M
(q + j2k)2αj(q)e

i(q+j2k)x

+

(
V0
2
− V0

4
ei2kx − V0

4
e−i2kx

)∑
j

αj(q)e
i(q+j2k)x

which finally gives a series of coupled equations for the coefficients αj(q)[
~2

2M
(q + 2jk)2 +

V0
2
− En(q)

]
αj(q)−

V0
4
αj−1(q)−

V0
4
αj+1(q) = 0
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Figure 4: Modulus of the Bloch functions |ψn,q(x)| = |un,q(x)| at q = 0 for n = 0 (left)
and n = 1 (right) and for V0 = 0, 2, 4, 8, 16, 32Erec.

that we solve numerically. The Bloch functions for the two fisrt bands and various values
of V0 are shown on Fig. 4.

Weak lattice For V0 small (V0 . Erec), the solution is close to the free particle solution,
with delocalized Bloch functions (see Fig. 4) and En(q) ' ~2(q±2nk)2/2M , except where
free-particle bands cross. This is the case for example for n = 0 and n = 1 close to
q = ±k. The dominant term in the Hamiltonian is p2/2M , V (x) weakly coupling p to
p± 2~k. Close to the edges of the Brillouin zone, this means that |+ ~k〉 and | − ~k〉 are
now weakly coupled, by V0/4. The Hamiltonian restricted to these two states writes, at
first order in V0:

Ĥ =

(
Erec + V0

2 −V0
4

−V0
4 Erec + V0

2

)
=

(
Erec +

V0
2

)
1− V0

4

(
0 1
1 0

)
.

The eigenstates are (|~k〉 ± | − ~k〉) /
√

2, corresponding to ψ0,k(x) ∝ cos(kx) and ψ1,k(x) ∝
sin(kx), with eigenenergies

E = Erec +
V0
2
± V0

4
⇒ E0(k) = Erec +

V0
4
, E1(k) = Erec +

3V0
4
.

The degeneracy at the crossing is lifted and the fundamental and the first excited bands
are splitted by V0/2.

N.B.: the splitting between the first and second excited band near q = 0 is much
smaller as it involves the second order coupling of |p = −2~k〉 to |p = 2~k〉 through
|p = 0〉. We find a splitting V 2

0 /(32Erec) to lowest order in V0.

Very deep lattice If the lattice is very deep, the confinement will provide a collection
of independent traps for atoms at energies much smaller than V0. The Bloch functions
are peaked around each lattice site, see Fig. 4, and the first energy bands resemble the
energy states at the bottom of an harmonic oscillator centered around each lattice well.
For example, near x = 0, we have

V (x) = V0 sin2(kx) ' V0k2x2 =
1

2
Mω2

0x
2

with the harmonic frequency given by

ω0 =

√
2
V0k2

M
or ~ω0 = 2

√
V0Erec. (13)
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Figure 5: Left: Band structure for V0 = 0 (dashed black lines) and V0 = Erec (full red
lines). Right: If we zoom near q = k, we observe a gap of ∼ V0/2 opening between the
fundamental and the first excited band. The dashed black lines are the V0 = 0 solutions
and the dashed blue line indicates the lattice depth V0.
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Figure 6: Red lines: first bands n = 0 to n = 3 for V0 = 400Erec. The bands are almost
flat. The dashed black lines give the harmonic levels (n+ 1/2)~ω0.

The energy bands are almost flat (independent of q), with En(q) ' (n+1/2)~ω0. The Bloch
functions are superpositions of localized functions around each site, with some dephasing.
We will discuss this more in detail later with the introduction of Wannier functions.

This situation is well-suited for the realization of optical clocks. The idea is to use
a narrow optical transition for the clock, between two electronic levels |g〉 and |e〉 which
can also be coupled to other states by stronger dipolar transitions. If there exists a
‘magic wavelength’ [5] such that the electric polarizability of |g〉 and |e〉 due to these other
couplings is the same, they will undergo the same light shift at this wavelength. We can
then build a strong standing wave at this wavelength, with V0 � Erec, to strongly confine
the atoms at the bottom of the lattice wells without affecting the clock transition.

With V0 very large, we will also have ~ω0 � Erec. This limit is called the Lamb-Dicke
regime. Unless a strong field drives a transition from |e, n〉 to |g, n ± 1〉 or vice versa,
this transition is strongly suppressed – in particular regarding spontaneous emission – due
to energy conservation: an emitted photon can only change the external energy by Erec,
which is very small as compared to the difference ~ω0 between different vibrational states
|n〉 and |n±1〉. The sidebands |g, n〉 → |e, n±1〉 are pushed away (by ±ω0, more than the
linewidth) from the carrier |g, n〉 → |e, n〉, which is exactly the clock frequency ωc to be
measured, see Fig. 7. This feature is at the heart of the modern strontium optical clocks.

Intermediate situation In the intermediate case (Fig. 8), the bands are well-separated
but not flat. If the atomic energy is small enough, the atoms will essentially stay in the
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Figure 7: Left: Carrier (black, center) and sideband (red, left and blue, right) transitions
in a lattice clock in the Lamb-Dicke regime. Right: Absorption spectrum of strontium 87
atoms confined in an optical lattice, with V0 = 940Erec. The carrier at the clock frequency
and the two sidebands at ωc ± ω0 are clearly visible. The population in excited states is
very small, hence the much weaker red sideband |g, n〉 → |e, n− 1〉. Figure from [10].

fundamental band. The system is better described with either Bloch states or localized
states coupled by tunneling between sites depending on the ratio V0/Erec.
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Figure 8: Band structure for V0 = 16Erec, compared to the free particle case (dashed
lines, left) or to the harmonic trap case (dashed lines, right). V0 is indicated by the blue
dashed line and a light blue filling. The energy bands are close to the free particle case
for energies En(q) > V0, i.e. for unbounded atoms. They are on the other hand close to
the harmonic levels for deeply bound bands at low energy En(q) < V0.

2 Dynamics in the lattice

2.1 Time-of-flight (TOF) analysis

As we have seen in the previous section, the eigenstates in the lattice are Bloch states,
a sum over a comb of equally spapced momentum state. An interesting way of getting
information on the momentum distribution of the atomic state in the lattice is to switch
off abruptly the trapping potential. If this is done very fast, the atomic wavefunction has
no time to evolve and simply remains what is was in the lattice – for example a given
Bloch function. A Bloch function with a given quasi-momentum q is a sum over plane
waves, see Eq. (12) with real momenta p = ~q + ~Q and coefficients αQ, where Q ∈ B′
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belongs to the reciprocal lattice.

|ψq〉 =
∑
Q∈B′

αQ(q)|~(q + Q)〉; ψ̃q (p, t = 0) ∝
∑
Q∈B′

αQ(q) δ(p− ~q− ~Q)

where ψ̃q (p, t = 0) is the Bloch wavefunction in p reprensentation at initial time. After
a time propagation tTOF, the atomic position is detected by absorption or fluorescence
imaging [11]. Provided tTOF is long enough, the position distribution is directly related
to the initial momentum distribution through r = vtTOF = ptTOF/M :

ψ(r, tTOF) '
(

M

~tTOF

)3/2

ψ̃q

(
Mr

tTOF
, t = 0

)
e
i Mr2

2~tTOF

∝
∑
Q∈B′

αQ δ

(
r− ~(q + Q)

M
tTOF

)

The position distribution consists in Dirac peaks weighted by |αQ|2, as expected for a
Bloch state which is a comb of momenta. If tTOFvrec is larger than the initial cloud size
where vrec = ~k/M is the recoil velocity, the peaks will be well-separated after TOF and
one can observe the weights |αQ|2 over the momenta ~q + ~Q.

Figure 9 shows the momentum distribution obtained from a Bose-Einstein condensate
loaded in a 3D square optical lattice, with an initial quasi-momentum q ' 0. The atoms
occupy essentially the same Bloch state, with a well-defined phase relation eiqa ' 1 between
lattice sites. This coherence develops into diffraction peaks after TOF. The situation is
similar to the Bragg diffraction of an atomic plane wave of momentum q through a lattice
of period a.

Figure 9: Left: time-of-flight expansion of a Bose-Einstein condensate loaded in a square
lattice. The peaks are split by 2~k in momentum. The coherence of the initial Bloch
state translates into diffraction peaks. Right: 3D reconstruction of the pattern from two
orthogonal imaging axes. Figure from [7].

2.2 Adiabatic switching

It is also interesting for a given experiment with an ensemble of atoms possibly occupying
different Bloch states to be able to recover the band population. This can be done with
an adiabatic opening of the lattice, i.e. a slow ramping down of the laser intensities.

11



Suppose we change the potential depth with time, such that the Hamiltonian is now
time-dependent

Ĥ(t) =
p̂2

2M
+ f(t)V (r̂)

where f(t) decribes the switching process. Ĥ still commutes with the T̂aj operators, so

does the evolution operator Û(t). An initial Bloch state with quasi-momentum q, ψq(r, 0),
which is a eigenstate of T̂aj with eigenvalue eiq·aj at time t = 0, is then still an eigenstate

of the T̂aj :

T̂ajψ(r, t) = T̂aj Û(t)ψ(r, 0) = Û(t)T̂ajψ(r, 0) = eiq·aj Û(t)ψ(r, 0) = eiq·ajψ(r, t).

ψ(r, t) is thus still an eigenstate with the same eigenvalue, which means that it is a Bloch
state for the new potential f(t)V (r) with the same quasi-momentum q. The quasi-
momentum is conserved while switching the lattice.

If, in addition, the variations of f are slow enough, such that the adiabaticity criterion
is fulfilled, the weights over the various bands will also be conserved. This is true if∣∣∣∣〈ψn′,q|

d

dt
|ψn,q〉

∣∣∣∣ =

∣∣∣∣〈un′,q|
d

dt
|un,q〉

∣∣∣∣� En′(q)− En(q)

~
for n 6= n′.

For example, starting with p = 0 and f(0) = 0, the final state will be q = 0 in the
fundamental band n = 0 provided that

ḟ � 32
√

2
E2

rec

~V0
in the limit V0 . Erec [8]. As the recoil frequency is on the order of a few kHz, a switching
time no the order of a millisecond leads to an adiabatic switching.

An adiabatic opening of the lattice will then adiabatically connect a state ψn,q of
the nth band to the plane wave with real momentum ~q ± 2n~k. By taking a picture
of the atoms after a time-of-flight, the momentum distribution translates into a position
distribution allowing to identify the population in the various bands before the adiabatic
switching, see Fig. 10.

2.3 Wavepacket evolution in a band

We will now consider (in one dimension) a superposition of Bloch states inside a given
band, with some weight f(q) over the different q, and wonder how it will evolve. We can
see this superposition as a wavepacket in q, with a center q0 and a width ∆q � 2k such
that it is well localized in the FBZ. At time t = 0, we write

ψ(x, 0) =

∫
f(q)ψn,q(x) dq

As ∆q � 2k, we can expand the energy En(q) around q0:

En(q) ' En(q0) + (q − q0)
dEn
dq

∣∣∣∣
q=q0

.

We define the following velocity:

vg,n =
1

~
dEn
dq

∣∣∣∣
q=q0

. (14)

12



Figure 10: Adiabatic band mapping procedure. Figure from [6].

It can be interpreted as the group velocity of the wavepacket in the band n. The wave-
function at time t is

ψ(x, t) =

∫
f(q)ψn,q(x)e−i

En(q)t
~ dq ' e−i

En(q0)t
~ eiq0vg,nt

∫
f(q)ψn,q(x)e−iqvg,nt dq.

Setting ω0 = En(q0)/~ − q0vg,n, using the periodicity of un,q with a we remark that at
time t = a/vg,n,

ψ(x, t = a/vg,n) = e−iω0t

∫
f(q)un,q(x− vg,nt+ vg,nt)e

iq(x−vg,nt) dq = e−iω0tψ(x− vg,nt, 0).

Apart from a phase factor, the wavepacket after this time is the initial wavepacket trans-
lated by vg,nt, which corresponds to a group velocity vg,n.

At the center of the band, vg,n = 0 and the energy can be written as

En(q) ' ~2q2

2m∗n

where

m∗n =

(
1

~2
d2En
dq2

∣∣∣∣
q=0

)−1
(15)

is the effective mass, which can be positive or negative. In the fundamental band n = 0,
m∗ = m∗0 'M for a weak lattice whereas m∗ �M for a deep lattice.

Close to q = 0 the group velocity thus writes

vg,n '
~q
m∗n

.

It is the same than for a free particle, except for a renormalization of the mass.

13



2.4 Bloch oscillations

We consider now the situation where, in addition to the periodic lattice, we add a constant
force acting on the atom. This situation is naturally encountered in the vertical direction
where gravity provides this force, F = −Mg. A constant initial force can also play this
role when the lattice is uniformly accelerated, by using in a beam pair along an axis z two
different frequencies with a linearly increasing frequency difference:

ω1 = ω + kαt ω2 = ω − kαt.

The laser phase is the integral of the frequency, and the resulting electric field is then of
the form

E ∝ e−iωt
(
e−i

kαt2

2
+ikx − iei

kαt2

2
−ikx

)
|E|2 ∝ sin2

[
k

(
x− αt2

2

)]
= sin2 [k (x− x0(t))] .

The lattice is static in the frame accelerated by the constant acceleration α. In this frame,
the atoms undergo a constant inertial force F = −Mẍ0 = −Mα.

The Hamiltonian can then be written as

Ĥ(t) =
p̂2

2M
+ V (x̂)− F (t)x̂ = Ĥ0 − F (t)x̂. (16)

Let us show that the evolution of a Bloch function can be described by an equation on
its quasi-momentum. We assume we start in a Bloch state with quasi-momentum q0 such
that

ψ(x, 0) = ψq0(x) = uq0(x)eiq0x.

We will first make a unitary transform to |ψ̃〉 = U(t)†|ψ〉 with

U(t) = e−
i
~A(t)x̂ with A(t) = −

∫ t

0
F (t′) dt′.

Of course ψ̃(x, 0) = ψ(x, 0) = uq0(x)eiq0x. |ψ̃〉 obeys the Hamiltonian

H̃ = i~∂tU(t)†U(t) + U(t)†H(t)U(t).

Simple algebra shows that we get rid of the force F (t):

H̃(t) =
[p̂−A(t)]2

2M
+ V (x̂). (17)

H̃ describes a particle in a lattice with a gauge field A(t). As V (x) is a-periodic, H̃(t)
commutes with T̂a at each time t, and so does the evolution operator Ũ(t1, t2) from t1 to
t2 associated to H̃. We conclude that the solutions of H̃ are of the form (2)

uq(x, t)e
iqx

where uq(x, t) is periodic with period a. The quasi-momentum q is preserved during the
evolution under H̃. As ψ̃(x, 0) is a Bloch function with q = q0, it will still be the case at
later times:

ψ̃(x, t) = uq0(x, t)eiq0x.

14



Figure 11: Bloch oscillations in an optical lattice. The momentum after a time-of-flight
(left) varies periodically from −~h to +~k. The group velocity (right) varies more sharply
close to the edges of the FBZ when the lattice depth V0 increases. From bottom to top:
V0/Erec = 1.4, 2.3, 4.4. Figure from [12].

Going back to |ψ〉 = U(t)|ψ̃〉, we can write

ψ(x, t) = uq0(x, t)eiq(t)x,

where

q(t) = q0 −
1

~
A(t) = q0 +

1

~

∫ t

0
F (t′) dt′. (18)

The wave function is a Bloch function with a quasi momentum which evolves under
the force F (t), as a real momentum would:

~q̇ = F (t). (19)

In the case where the force F is constant, the state will come back to its initial value
when q(t) has increased by 2π/a, see Fig. 11, i.e. after a time

τB =
h

Fa
.

This is called the Bloch time. The state evolution is periodic at the Bloch frequency

ωB =
Fa

~
. (20)
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Figure 12: Up to 20,000 Bloch oscillations were observed for cesium atoms in an optical
lattice, using a very cold sample (a BEC) with no interactions, cancelled with a Feshbach
resonance. Left: quasi-momentum distribution in the FBZ observed after a time-of-flight.
Right: Average quasi-momentum as a function the number of Bloch periods. Figure
from [14].

~ωB = Fa is the energy difference between two consecutive lattice minima. The existence
of periodic modulation of q can be used to measure either g or h/M very precisely [13] in
a vertical lattice of period λ/2, where the Bloch frequency reads

ωB =
Mgλ

2~
= π

gλ

h/M
.

A record number of oscillations of 20000 has been reported using a BEC where the inter-
actions are tuned to zero with a Feshbach resonance [14], see Fig. 12.

In addition, Bloch oscillations provide a way to give a controlled momentum kick of
2n~k to atoms [15], which can be used for building large area atom interferometers [16,17].
To this aim, a pair of lasers with different frequencies is applied such that atoms start
Bloch oscillations in the frame moving with the lattice, resulting in an acceleration in the
laboratory frame. After n Bloch periods, the momentum change is exactly 2n~k.

Bloch oscillations can be interpreted in terms of Bragg diffraction: when an atom
reaches the edge of the Brillouin zone with a momentum ~k, it has exactly the resonant
velocity for a Bragg diffraction, conserving both energy and momentum, and ends in the
−~k state. Two photons are exchanged with the standing wave, one being absorbed in
one beam while the other is emitted in a stimulated emission process in the other beam.

3 Deep lattices: from Wannier to Bose-Hubbard

We have seen that for V0 larger than a few Erec, the lowest band is almost flat with an
energy close to the energy of the harmonic oscillator at the bottom of a given well. In fact,
in this case the uq(r) periodic part of the wavefunction resembles a series of groundstates
of the harmonic oscillator located at the lattice minima – lattice sites. In order to get
a description more appropriate for this case of localized wavefunctions, we will introduce
the Wannier functions, which describes the state in the point of view of the lattice sites.
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3.1 Wannier functions

Consider the 1D case with a lattice potential V (x) = V0 sin2(kx), Bloch function ψn,q(x)
with energies En(q). The minima of V (x) are located at points

xj = ja, j ∈ Z.

We define the Wannier function for site j in band n as:

Wn,j(x) =
1√
Ns

∑
q∈FBZ

ψn,q(x) e−ijqa (21)

where Ns = L/a is the number of sites (a large number). We note immediately that

Wn,j(x) =
1√
Ns

∑
q∈FBZ

un,q(x) eiq(x−ja)

=
1√
Ns

∑
q∈FBZ

un,q(x− ja) eiq(x−ja)

=
1√
Ns

∑
q∈FBZ

ψn,q(x− ja) = Wn,0(x− ja)

The Wannier function at site j is nothing but the Wannier function at site 0 shifted by
ja. It is thus enough to study the well x = 0 in order to deduce all the Wn, j.

N.B. The Wannier function depends on the phase choice of the Bloch functions. The
is a choice sich that Wn,j ∈ R and Wn,j is either even or odd, and decays exponentially
with x.

The Bloch functions can be written in terms of the Wannier functions, in the spirit of
a Fourier series:

1√
Ns

∑
j

Wn,j(x) eijqa =
1

Ns

∑
j

eijqa
∑

q′∈FBZ

ψn,q′(x) e−ijq
′a

=
1

Ns

∑
q′∈FBZ

ψn,q′(x)
∑
j

eij(q−q
′)a

=
1

Ns

∑
q′∈FBZ

ψn,q′(x)Nsδ̃q,q′

= ψn,q(x)

where the δ̃ sign means that q′ = q modulo 2π/a. We can thus give ψn,q as a function of
Wn,0:

ψn,q(x) =
1√
Ns

∑
j

Wn,0(x− ja) eijqa. (22)

The Wannier functions form a basis of the function space:∫
Wn,j(x)Wn′,j′(x) dx = δn,n′δj,j′ . (23)

In particular, as this is also true for Wn,0(x) and Wn,j(x) = Wn,0(x− ja), it means than
Wn,0 always has positive and negative values. This is clear on Fig. 13, which gives examples
of Wannier functions for various values of V0. We also remark that Wn,0 is more and more
peaked for increasing values of V0.
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Figure 13: Amplitude of the Wannier functions in the fundamental band Wn=0,j(x) for
j = 0 (full lines) and j = −1 (dashed lines) for V0 = 0, 2, 8, 16Erec.

3.2 Hamiltonian in terms of Wannier functions

We will now give another expression of the Hamiltonian using the Wannier functions, which
is particularly relevant in the tight-binding regime. The idea is to give the Hamiltonian
under a second quantized form for bosons using creation and anihilation operators in a
given Wannier state.

We start with the Bloch states |ψn,q〉, which are the eigenstates of Ĥ. We introduce the

operators ân,q and â†n,q which anihilate and create an atom in the Bloch state |ψn,q〉, re-
spectively. We describe bosons here such that the operators obey the bosonic commutation
relations [

ân,q, â
†
n′,q′

]
= δn,n′ δ̃q,q′ .

The Hamiltonian can then be written as

Ĥ =
∑
n

∑
q∈FBZ

En(q)|ψn,q〉〈ψn,q| =
∑
n

∑
q∈FBZ

En(q)â†n,qân,q. (24)

If we now introduce the operators b̂n,j and b̂†n,j which anihilate and create an atom in the

Wannier state |Wn,j〉, the ân,q and b̂n,j are linked by a relation similar to Eq. (22):

ân,q =
1√
Ns

∑
j

b̂n,j e
ijqa. (25)

Let us substitute Eq. (25) into the Hamiltonian Eq. (24):

Ĥ =
1

Ns

∑
n

∑
j,j′

b̂†n,j b̂n′,j′
∑
q∈FBZ

En(q) ei(j
′−j)qa
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Ĥ =
∑
n

∑
j,j′

Jn(j′ − j) b̂†n,j b̂n′,j′ (26)

where

Jn(j) =
1

Ns

∑
q∈FBZ

En(q) eijqa =
L→∞

a

2π

∫ π
a

−π
a

En(q) eijqa dq. (27)

The second expression is obtained when we let L or Ns → ∞. J(j) is real due to the
symmetry of En(q). It describes the hopping within band n between sites separated by a
distance ja:

Jn(j) = 〈Wn,j |Ĥ|Wn,0〉.

Using Fourier transform we can write in the limit Ns →∞

En(q) =
∑
j

Jn(j) e−ijqa = Jn(0) +
∞∑
j=1

Jn(j) cos(jqa). (28)

Jn(0) is the average value of En on the FBZ. Jn(j) decreases rapidly with j.
In the fundamental band, as soons as V0 > Erec, we can write

E0(q) ' J0(0)− 2J cos(qa)

where we have defined

J = −J0(1) = − 1

Ns

∑
q∈FBZ

E0(q) e
iqa =

L→∞
− a

2π

∫ π
a

−π
a

E0(q) e
iqa dq. (29)

The minus sign is introduced such that J > 0. The energy width of the fundamental band
is approximately 4J .

3.3 Bose-Hubbard Hamiltonian

The Hamiltonian (26) describes the dynamics of non interacting bosons in the lattice.
This form is well appropriate to now add the interations between the bosons, within some
approximations.

We will consider the case of a lattice deep enough (V0 > Erec) and energies small
enough in order to restrict the description to the lowest band (n = 0) and neglect hopping
to distant sites, namely J0(j) for j ≥ 2. As J0(0) is an irrelevant offset of the energies we
will also drop it. We will also omit the n = 0 index in the b̂ operators. The Hamiltonian
for non interacting particles thus writes

Ĥ = −J
∑
j

(b̂†j b̂j+1 + b̂†j b̂j−1) = −J
∑
j

b̂†j+1b̂j + h.c.

The interaction term of the Hamiltonian, if we assume contact interactions Vint(r, r
′) =

gδ(r− r′), writes in second quantization

Ĥint =
g

2

∫
ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x) dx.
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We now write the field operator ψ̂(x) in terms of Wannier operators

ψ̂(x) =
∑
n,j

Wn,j(x)b̂n,j .

This will give for Ĥint a sum on n1n2n3n4 and j1j2j3j4 of overlap integrals of Wannier
functions. For interaction energies small enough, the system always stays in the lowest
band such that ni = 0. In addition, for V0 larger than a few Erec, the extension of W0,j

to the next well j ± 1 is very small (see Fig. 13) such that the overlap integral will be
vanishingly small unless j1 = j2 = j3 = j4 = j. We are thus left with

Ĥint =
g

2

∑
j

b̂†j b̂
†
j b̂j b̂j

∫
W 4

0,j dx =
g

2

∑
j

b̂†j b̂
†
j b̂j b̂j

∫
W 4

0,0 dx.

We introduce the operator n̂j = b̂†j b̂j which counts the number of particles in state |W0,j〉.
Using the bosonic commutation relations, we can derive the interaction term

Ĥint =
U

2

∑
j

n̂j(n̂j − 1) (30)

where

U = g

∫
W 4

0,0 dx. (31)

The total Hamiltonian then reads

ĤBH = −J
∑
j

b̂†j+1b̂j + h.c. +
U

2

∑
j

n̂j(n̂j − 1). (32)

It is called the Bose-Hubbard Hamiltonian.

3.4 Mott transition

The ground state of the Bose-Hubbard Hamiltonian depends on the relative weight of the
kinetic (J) and interaction (U) term. We can give an estimation of U by approximating
W0,0 as the ground state of an harmonic oscilltor at the bottom of a lattice well, with the
frequency ω0 given by Eq. (13):

U ' g√
2πa0

where a0 =

√
~

Mω0
=

1

k

(
Erec

V0

)1/4

In the 3D case, we find

U ' g

(2π)3/2a30
.

Using the expression of g in the frame of s-wave collisions with scattering length as:

g =
4π~2as
M

, (33)

we get for the 3D case

U

Erec
'
√

8

π
kas

(
V0
Erec

)3/4

. (34)

20



Figure 14: Observation of the Mott transition with a quantum gas. Diffraction peaks
are present at low V0, when the state is coherent and the number of particles per site
fluctuates. They disappear at large V0 when coherence is lost and the number of particles
per site is equal to the filling factor ν. Figure from [6].

An estimate for J in the limit V0 � Erec is given by

J

Erec
'
√

4

π

(
V0
Erec

)3/4

e−2
√
V0/Erec . (35)

It follows that the ratio of J and U depends exponentially on
√
V0:

J

U
'
√

2

kas
e−2
√
V0/Erec . (36)

It is therefore quite easy to modify strongly this ratio, from a regime J � U where
interactions play little role to an interaction-dominated regime for U � J . For example,
with rubidium atoms in a lattice with k ∼ k0 where λ0 = 2π/k0 is the resonance wavelength
at 780 nm, J/U ' 40 exp[−2

√
V0/Erec] and the transition from a regime to the other

occurs around V0 ' 16Erec.
The Mott transition is a quantum phase transition, occuring at zero temperature,

from a conducting state (for electrons in a solid) to an insulating state as the interaction
strength increases. It occurs for a critical value of J/U . By analogy, it has been proposed
by Jaksch et al. [18] to observe it with cold gases in optical lattices. The transition here
occurs between a superfluid state for high J/U and a localized (or insulating) state for
low J/U .

Consider the situation where we have N particles spread in the Ns sites of the lattice,
which corresponds to a filling factor ν = N/Ns. At low V0, for J/U > (J/U)c, kinetic
energy dominates, the many-body wave function of the particles is close to the product
state of Bloch states corresponding to noninteracting particles, i.e. we have all N particles
in a Bloch state:

|ψ〉SF '
1√
N !

(
â†q

)N
|0〉
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with q = 0 for the ground state. It is delocalized and coherent over the whole lattice:

〈b̂†j b̂j′〉 = νei(j−j
′)qa ⇒

∣∣∣〈b̂†j b̂j′〉∣∣∣ = ν.

Diffraction peaks are visible in a time-of-flight experiment, see Fig. 14. Simple algebra
shows that the average number of particles in each well is equal to the filling, 〈n̂j〉 =

〈b̂†j b̂j〉 = ν but this number fluctuates with Poissonian statistics:

∆nj =
√
〈n̂2j 〉 − 〈n̂j〉2 =

√
ν

(
1− 1

Ns

)
'
√
ν =

√
〈n̂j〉.

On the other hand, for larger V0 such that J/U < (J/U)c, the interaction energy
dominates and the ground state is determined by its minimization, which corresponds to
having the same number of particle per site. In particular if the filling is an integer number
ν, the ground state corresponds to a fixed number ν of particles per site and writes

|ψ〉Mott = |ν, ν, . . . , ν〉 =
∏
j

1√
ν!

(
b̂†j

)ν
|0〉.

This can be understood by comparing the interation energy in two situations: (i) ν particles
in two neighbouring sites or (ii) ν − 1 in one and ν + 1 in the other:

E(i) = 2× U
2
ν(ν−1) = U(ν2−ν) E(ii) =

U

2
(ν−1)(ν−2)+

U

2
ν(ν+1) = U(ν2−ν+1)

We find that E(ii) > E(i) and the difference is exactly U . The particles are frozen in the
wells, and this stae is called a Mott insulator. The average 〈n̂j〉 is still ν, but now the
fluctuations vanish:

〈n̂2j 〉 = 〈b̂†j b̂j b̂
†
j b̂j〉 = 〈b̂†j b̂

†
j b̂j b̂j〉+ 〈b̂†j b̂j〉 = ν(ν − 1) + ν = ν2 = 〈n̂j〉2 ⇒ ∆nj = 0.

On the contrary, the relative phase between wells, which is related to its conjugate variable,
is undetermined:

〈b̂†j b̂j′〉 = νδj,j′ .

Superfluidity is destroyed and the system is in a highly correlated many-body state, not
a Bloch state common to all atoms. Diffraction peaks disappear in a time-of-flight exper-
iment, see Fig. 14.

Strictly speaking, the Mott transition would only occur at integer filling. If the atoms
are confined in a large scale trap on top of the lattice, however, the local value of the
chemical potential depends on the position – larger at the center where the atoms gather
and smaller towards the edge. As a result, the gas organises into concentric zones where
the filling is fixed and the state is an insulator, with small transition regions which absorb
all the fluctuations. This structure with shells resembles a wedding cake, see Fig. 15.

3.5 Noise correlations in the Mott phase

We could wonder if the smearing of the diffraction peak is a sufficient proof for a Mott
state, and not instead due to some experimental imperfection. A first argument for the
quality of the state preparation is that the diffraction peaks are recovered if the lattice
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Figure 15: Mott shells for an inhomogeneous quantum gas in the presence of an external
harmonic trap. Left: for a chemical potential µ0 at the center, the local chemical potential
µ = µ0 − Vext(r) varies across the trap, and so does the average filling factor. Right: At
fixed J/U , starting from the edges, the system spans all values of µ/U betwenn 0 and
µ0/U and goes across several Mott zone with ν = 1, 2, 3 . . . Figure from [7].

amplitude is ramped back to below the transition threshold. Another evidence takes
advantage of the noise correlations in the Mott phase.

The momentum distribution is the Fourier transform of the first order correlation:

〈n(k)〉 ∝
∑
i,j

eik·(rj−ri)〈b̂†i b̂j〉 = νNs in the Mott phase.

Density correlations computed on a time-of-flight picture give access to second order mo-
mentum correlations in the Mott state, i.e.:

〈n(k)n(k′)〉 ∝
∑
i,j,`,m

eik·(rj−ri)eik
′·(rm−r`)〈b̂†i b̂j b̂

†
` b̂m〉.

We can compute C = 〈b̂†i b̂j b̂
†
` b̂m〉 in the Mott phase with filling ν. Using the commutation

relations, this writes
C = 〈b̂†i b̂

†
` b̂j b̂m〉+ δj,`〈b̂†i b̂m〉.

The second term in the sum is equal to νδj,`δi,m. The first term is zero unless j = i and
m = `, or j = ` and m = i, or all the indices are equal. The first term reads

〈b̂†i b̂
†
` b̂j b̂m〉 = ν2 (δi,jδ`,m − δi,j,`,m) + ν2 (δi,mδj,` − δi,j,`,m) + ν(ν − 1)δi,j,`,m.

Finally
C = ν2δi,jδ`,m + (ν2 + ν)δi,mδj,` − ν(ν + 1)δi,j,`,m.

We get

〈n(k)n(k′)〉 ∝ ν2N2
s + ν(ν + 1)

∑
i,j

ei(k−k
′)·(rj−ri) − ν(ν + 1)Ns.

The normalized correlation function is obatined after dividing by ν2N2
s :

g(2)(k,k′) = 1 +
ν + 1

ν

1

N2
s

∑
i,j

ei(k−k
′)·(rj−ri) − ν + 1

ν

1

Ns
.

When Ns is large, the last term is negligible. The second term vanishes, unless k − k′

belongs to the reciprocal lattice, and in this case this term is (ν+ 1)/ν, on the same order
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Figure 16: Correlations in the density distribution after a time-of-flight, which measure
the momentum second order correlations. Left, from [19]: bosons in the Mott phase, with
positive correlations at momenta corresponding to multiples of 2~k. Right, from [20]:
fermions in the Mott phase, the correlation is negative at ±2~k because of the fermionic
statistic.

than the first term. The regular underlying structure of the Mott phase is revealed in the
density correlations after a time-of-flight, as is clear from Fig. 16.

When fermions are used instead of bosons, a Mott phase also exists. The first swap
between b̂j and b̂†` introduces a minus sign. As a result, we know observe anti-correlations
when the momenta differ by a vector of the reciprocal lattice, see Fig. 16.
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