Dipole-dipole interactions between atoms

for many-body physics and

quantum information

Antoine Browaeys

Laboratoire Charles Fabry, Institut d'Optique, CNRS, FRANCE

Dipole interactions for QIP and many-body physics

R. Kaiser

Our Goal

(as many groups...)

Quantum state engineering: create controlled quantum states

Many-body physics

Quantum information

Quantum metrology

Transition quantum / classical

Quantum state engineering with individual systems

Neutral atoms

Trapped ions

Photons

NV centers

Quantum dots

Superconducting qubits

Quantum state engineering with individual systems

NV centers

Quantum dots

Superconducting qubits

Platforms in AMO physics

Coupling range

Outline

- Lecture 1: Dipole-dipole interaction between atoms
- Lecture 2: Basics of Rydberg physics. Arrays of cold atoms. Rydberg blockade & QIP
- Lecture 3: Many-body physics with Rydberg atoms

Molecular potentials Rb₂

O. Dulieu, LAC

On-line interaction calculator

https://arc-alkali-rydberg-calculator.readthedocs.io/en/latest/

Docs » Pairinteraction - A Rydberg Interaction Calculator

S. Weber

Pairinteraction - A Rydberg Interaction Calculator

The *pairinteraction* software calculates properties of Rydberg systems. The software consists of a C++/Python library and a graphical user interface for pair potential calculations. For usage examples visit the tutorials section of the documentation. Stay tuned by signing up for the newsletter so whenever there are updates to the software or new publications about pairinteraction we can contact you. If you have a question that is related to problems, bugs, or suggests an improvement, consider raising an issue on GitHub.

https://pairinteraction.github.io/pairinteraction/ sphinx/html/index.html

Sub- and super radiant states (linear dipoles)

Sub- and super radiant states (linear dipoles)

Near-field vs. far-field = coherent vs. collective dissipation

$$V_{\rm dd} = -\frac{d_{eg}^2 k^3}{4\pi\epsilon_0} e^{ikr} \left[\left(\frac{1}{(kr)^3} - \frac{i}{(kr)^2} \right) (3\cos^2\theta - 1) + \frac{\sin^2\theta}{kr} \right]$$
$$kr \ll 1$$
$$kr \gtrsim 1$$
$$kr \gtrsim 1$$
$$V_{\rm dd} \sim \frac{d_{eg}^2}{r^3} \gg \hbar\Gamma$$
$$V_{\rm dd} \sim \frac{\hbar\Gamma}{kr} \sim \hbar\Gamma$$

 \Rightarrow "coherent" interaction

 \Rightarrow **Dissipative** spin models

Resonant dipole interaction: observations of the eigenmodes

1. Far field (R = 2 λ): Modification of lifetime Ba⁺, 6S_{1/2} – 6P_{3/2}

8.2

8.1

8.0

7.9

7.8

1.2

1.3

1.4

ion-ion distance (microns)

1.5

1.6

1.7

Spontaneous Emission Lifetime (ns)

DeVoe, Brewer, PRL **76**, 2049 (1996)

2. Near field (R = 0.02 λ): spectroscopy of 2 Terrylene molecules

